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EXECUTIVE SUMMARY

AUTOMATED ESTIMATION OF WINTER
DRIVING CONDITIONS

Introduction

Real-time information regarding the status of the highway

network has wide-ranging benefits. Knowledge of current traffic

speeds, work zones, traffic cameras, and incident reports allows

travelers to modify their routes and avoid potential hazards.

In addition, operators of the transportation system rely heavily

on such information to identify and verify incidents, manage

winter maintenance resources, and issue advisories, resulting in

improved safety and efficiency. INDOT uses numerous methods

of communicating such information both internally and to the

public, such as websites, ‘‘511’’ phone systems, and messaging

signs. These systems have been evolving rapidly as new innova-

tions are implemented, and customers have increasing expecta-

tions of continued advances.

It is critical for transportation agencies to be able to monitor

conditions in real time as well as over the long term for purposes

of maintenance, planning, and performance evaluation. INDOT

uses the Condition Acquisition Reporting System (CARS) as a

tool for communicating driving condition information along with

weather-related impacts such as winter driving conditions, flood-

ing, and weather warnings. During winter weather events, as staff

observe conditions in real time, reports of winter driving

conditions are submitted to CARS. There are practical limitations

to this system since staff efforts during winter weather events are

focused primarily on maintenance actions. During intense winter

storms, it may be difficult for plow drivers and supervisors to

report the driving condition. This provides motivation for this

work in the development of automated tools that support the

analysis and communication of information related to driving

conditions.

There is great potential for improvements in traveler safety and

satisfaction as new sources of information are incorporated into

advanced analytics and prediction systems. In this project, we have

developed innovative approaches to produce real-time estimates of

winter driving conditions along with seasonal summaries of winter

precipitation. High-fidelity weather information was integrated

with CARS winter driving condition reports to develop a model

that can accurately estimate driving conditions across the state

based on weather variables. An experimental system was executed

during the 2017–18 winter season to demonstrate the potential

for automated estimates of driving conditions across Indiana. In

addition, crowdsourced observations of winter precipitation were

merged with standard observations at airports to generate high-

quality seasonal analyses of winter precipitation frequency by type,

such as snow and freezing rain.

Findings

N Several machine learning classification methods were tested

and evaluated using a multi-year training data set. An

experimental system was executed in real time during the

2017–18 winter season to demonstrate the potential for

automated estimates of driving conditions across the state.

A model based on the random forest approach was able to

correctly classify examples from the test dataset at roughly

90% accuracy. The performance of this model fell to ,70%

when applied to the 2017–18 season.

N Reduction in performance during the 2017–18 season was

likely caused by ‘‘overfitting’’ to the 2014–16 data that was

used to train the system, along with changes in the system

used by the National Weather Service to provide short-term

weather forecast information. Further research is needed to

address these issues.

N In addition, crowdsourced observations of winter precipita-

tion were merged with standard observations at airports to

generate high-quality seasonal analyses of winter precipita-

tion frequency by type, such as snow and freezing rain. These

results provide a significant update to a recent Clear Roads

study and contain a large number of observations that were

unavailable in that previous study.

Implementation

The automated estimates for driving conditions will be refined

as more information becomes available. A system for notifying

INDOT staff of significant discrepancies between the current

CARS reports and automated estimates will be implemented. This

is a reasonable step between the current system and using the

automated estimates as a ‘‘first guess’’ in the CARS reporting

system. Monthly and seasonal analyses of winter precipitation

types are available for planning and performance evaluation

purposes via a web interface.
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1. INTRODUCTION

Traveler safety and customer satisfaction are critical
components of INDOT’s mission, goals, and values
(Indiana Department of Transportation, 2018). Access
to information regarding driving conditions is an
important factor in improving both customer satisfac-
tion and safety. Operators of the transportation system
rely heavily on such information to identify and verify
incidents, manage winter maintenance resources, and
issue advisories; resulting in improved safety and effi-
ciency. In addition, travelers benefit greatly from access
to up-to-date information regarding the status of the
road network (Toledo & Beinhaker, 2006). Customers
also have increasing expectations of the system, inclu-
ding better access and improved quality of this informa-
tion. To meet these needs, INDOT utilizes several
methods for communication, such as websites, ‘‘511’’
phone systems, social media outlets, and messaging
signs. In particular, INDOT uses the Condition Acqui-
sition Reporting System (CARS) as a tool for commu-
nicating road condition information. During winter
weather events, as plow drivers and supervisors observe
driving conditions in real time, they submit reports
of winter driving conditions to the CARS system.
Travelers use this information to plan their routes,
make decisions on timing, and improve their awareness
of potential hazards.

Travelers have a very good understanding of how
weather can impact driving conditions and there is
considerable potential to improve traveler safety and
satisfaction by incorporating weather information into
transportation systems management and operations
(Garrett et al., 2017). Since CARS reports are sub-
mitted manually, there are some practical limitations of
this system. Staff effort during winter weather events
is focused primarily on maintenance actions. During
intense winter storms it may be difficult for plow drivers
and supervisors to report the driving condition. This
provides motivation for the development of automated
tools to assist with the analysis and communication
of driving condition information. By incorporating
recent advances in environmental sensors, crowdsourced
reported conditions, and prediction models improve-
ments in estimation of the state of the road network can
be realized. The value of such estimates could be boosted
by expanding the information to include impacts on
capacity, work zones, road maintenance strategy, snow-
plow routing, etc. Data availability and tools for analy-
tics and prediction are developing rapidly, this is only
expected to continue at an explosive pace as connected
vehicles and other advances in technology are widely
deployed.

Weather often plays a significant role in determining
roadway mobility and safety, especially during the
winter season (Juga, Nurmi, & Hippi, 2013; Kwon, Fu,
& Jiang, 2013). Precipitation varies considerably over
time and across locations during a storm, potentially
causing large variations in driving conditions across the
state. Rapidly changing weather conditions can also

result in large variations in traffic speeds. The high
degree of temporal and spatial variability in these
important sources of information argues for the need to
acquire, analyze, and communicate data rapidly and
effectively. There are numerous sources of data related
to weather and traffic; INDOT (and JTRP) have been
leaders in the development and implementation of
integrating, analyzing, and communicating this infor-
mation via ‘‘tickers’’ and spatial maps (McNamara
et al., 2016). Seasonal analyses of winter precipitation
can also be useful for planning and performance evalu-
ation purposes.

In this project, we have developed innovative
approaches to produce real-time estimates of winter
driving conditions along with seasonal summaries of
winter precipitation. High-fidelity weather information
was integrated with CARS winter driving condition
reports to develop a model that can accurately estimate
driving conditions across the state based on weather
variables. Several methods were tested and evaluated
using a multi-year training data set. An experimental
system was executed in real time during the 2017–18
winter season to demonstrate the potential for auto-
mated estimates of driving conditions across the state.
In addition, crowdsourced observations of winter pre-
cipitation were merged with standard observations at
airports to generate high-quality seasonal analyses of
winter precipitation frequency by type, such as snow
and freezing rain.

The remaining sections of this report will provide
information regarding the sources of weather informa-
tion used, describe how the machine learning models
were trained and evaluated, discuss an example case in
detail, and provide seasonal summaries of winter pre-
cipitation types from standard and crowdsourced
observations.

2. SOURCES OF INFORMATION

JTRP has maintained a database of weather and
traffic information for several years. Numerous web-
based mobility dashboards and tickers have been
developed that utilize this database (Indiana Depart-
ment of Transportation, 2018) including the weather
ticker (McNamara et al., 2016). Purdue EAPS research-
ers continue to provide the weather data feed into this
database (Baldwin, Snyder, Miller, & Hoogewind, 2015).
For this project, weather-related variables were obtained
from a variety of sources. These were all generated
routinely by the National Weather Service, and are freely
available in near real time for monitoring and predicting
weather conditions. Variables were interpolated to a
regular latitude/longitude grid across the lower 48
United States, using 1/8 degree grid spacing (approxi-
mately 12.5 km/8 miles). Weather variables represent
spatial averages across an area represented by a grid
box, at hourly temporal accumulation or average,
ending at the valid time of the analysis. Traffic speed
information and CARS winter driving index reports
were also obtained from the JTRP database.

Joint Transportation Research Program Technical Report FHWA/IN/JTRP-2018/22 1



2.1 Traffic Speed Information

Crowdsourced probe vehicle data for traffic informa-
tion were provided to JTRP by an independent con-
tractor (INRIX). These reports were derived from cell
phone data and fleet vehicles. Traffic speed information
is displayed in several examples in upcoming sections of
this report to provide evidence of winter driving con-
ditions. To reduce computation time needed for data
retrieval and processing, 15-minute median data was
used for major roadways, and this was further averaged
into hourly values to match the timing of the weather
variables. Although traffic speed information was not
used as a predictive variable in the machine learning
system for this project, we plan to incorporate this
information in future research.

2.2 INDOT Condition Acquisition Reporting
System (CARS)

The INDOT CARS database includes categorical
winter driving conditions along with other pertinent
information. There are 709 unique road segments across
that state that were available for CARS winter driving
index reports, which were in categories of ‘‘good,’’ ‘‘fair,’’
‘‘difficult,’’ or ‘‘hazardous.’’ One limitation of this dataset
is that driving conditions are manually reported by
INDOT staff; therefore the locations of these reports
could be biased towards the location preferences of
the reporters. In addition, winter maintenance efforts
to improve the road condition may occur before the
report is posted; therefore these reports could be skewed
towards better conditions. Another factor which may
decrease the frequency of ‘‘difficult’’ and ‘‘hazardous’’
conditions is that it may become increasingly difficult
for the plow driver or supervisor to report the condition
in those situations. CARS reports are available online at
https://indot.carsprogram.org/.

2.3 North American Mesoscale (NAM) Model

The North American Mesoscale prediction system
(NAM; Rogers et al., 2017) is a short-range weather
prediction and data assimilation system that provides
weather forecast information to the National Weather
Service and other users. The NAM has horizontal grid
spacing of 12 km with 60 vertical levels. Forecasts are
updated every six hours and output is available out to
84 hours into the future. Hourly output covering the
first six hours of the period were collected and used to
estimate hourly weather conditions in real time. Besides
precipitation amount, all weather variables for this
project were obtained from the NAM and added to the
JTRP database. Contained within the NAM dataset are
categorical precipitation type variables (rain, snow, ice
pellets, and freezing rain) that were used to estimate
winter precipitation reaching the ground. These classi-
fications are based on logic that involves vertical ther-
mal and moisture profiles (Baldwin et al., 1994).

TABLE 2.1
Weather-related variables and units used in this project

Weather variable Units

Specific humidity @ 2m kg/kg

Air temperature @ 2m K

Wind speed and gusts @ 10m m/s

Surface temperature K

Net surface solar and longwave radiation W/m2

Sensible, latent, and ground heat fluxes W/m2

Categorical precipitation types binary (yes/no)

Visibility m

Snow depth m

Hourly precipitation mm

Surface pressure Pa

Energy required to melt new snow/ice in past

hour (Qextra, Qtotmelt)

J

2.4 NCEP Stage IV Precipitation Analysis

The National Centers for Environmental Prediction
(NCEP) Stage IV precipitation analysis (Baldwin &
Mitchell, 1997) was used for information on precipita-
tion in this project. Stage IV is an hourly mosaic of
precipitation accumulation compiled using both rain
gauge and radar data. These data are compiled by each
of the 12 River Forecast Centers (part of the National
Weather Service) located across the country. Stage IV
precipitation analyses are represented on a grid with
spatial resolution of 4 km and have available temporal
aggregations of one hour, six hours, or 24 hours. More
information about the NCEP Stage IV precipitation
analysis can be found at http://www.emc.ncep.noaa.
gov/mmb/ylin/pcpanl/stage4/.

2.5 Summary of Weather-Related Variables and
Data Sources

Table 2.1 lists the weather-related variables from
NAM and Stage IV that were used in this project and
their units.

3. MACHINE LEARNING

3.1 Overview

Machine learning and data science approaches have
received a great deal of attention in recent weather and
climate research due mainly to the rapid growth in data
and the demand for improvements in forecasting and
monitoring of weather events and their impacts on
society. These techniques can recognize patterns and
simplify complex information from wide-ranging sources
and provide additional decision support for end-users.
For example, McGovern et al. (2017) provide an
overview of recent research in application of machine
learning to a variety of weather prediction problems.
Several of these are directly related to transportation,
such as aviation turbulence (Williams, 2014), precipi-
tation classification (Elmore et al., 2015), and severe
hail (Gagne, 2016). Carmichael, Gallus, Temeyer, and

2 Joint Transportation Research Program Technical Report FHWA/IN/JTRP-2018/22



Bryden (2004) used an artificial neural network to
develop a winter severity index for winter maintenance
in Iowa. Machine learning and data science are also very
active areas of research in transportation, such as hazar-
dous condition warnings and traffic flow predictions
(e.g., Cai et al., 2016; Lv, Duan, Kang, Li, & Wang, 2015;
Oh, Oh, & Ritchie, 2005; Tang, Liu, Zou, Zhang, &
Wang, 2017). In this project, we demonstrate the appli-
cation of machine learning techniques with weather and
road condition information with the goal of improving
understanding and communication of the current state of
the highway network.

For this project, we tested several different machine
learning approaches in order to determine the best
method for automatically estimating the CARS winter
driving index based on weather variables. These app-
roaches attempt to learn the relationship between some
input (in this project: weather variables) and an output
target, or label (CARS reports). When the output
labels are distinct classes (‘‘good,’’ ‘‘fair,’’ ‘‘difficult,’’
‘‘hazardous’’) this is known as a classification problem
(Pedregosa et al., 2011). Machine learning models have
the ability to adapt, or learn, from previously known
examples of inputs and outputs, collectively called
training data. Users of these models assume that they
will be able to generalize to situations that are not
included in the training data (Domingos, 2012) and will
be useful for prediction and estimation purposes.

In this project, the machine learning methods that
were found to be most successful in connecting input
weather variables to output CARS winter driving condi-
tion reports were based on decision trees (Burris, 2018).
Similar to other machine learning procedures, decision
trees begin with input that consists of numerous attri-
bute variables (‘‘features’’). These are used for the clas-
sification problem, so the output must be in the form of
distinct classes or labels. Each input example (or object)
starts at the root of the decision tree and passes through
various branches, or nodes. Each node contains an
attribute-based test which helps to discriminate different
classes of objects. The final step of this process is the
‘‘leaf’’ which is the predicted class (label) that the model
assigns to that set of input variables. Nodes are designed
to maximize separation between input objects that are
presented (Quinlan, 1986).

It is not unusual to find several machine learning
approaches that can classify examples in the training
data set with few mistakes. However, even if a decision
tree is able to correctly classify every example in the
training data, there is no guarantee that the tree will
correctly classify examples from outside the training
data. Since the training data probably does not contain
every possible combination of input/output connec-
tions, it is very likely that this seemingly perfect tree
found irrelevant and or noisy details within the training
data. This is known as ‘‘overfitting,’’ which is a wide-
spread issue in machine learning and has aspects of
both systematic error (repeatedly learning the wrong
connection between input/output examples) and ran-
dom error (learning random variations about input/

output examples) (Domingos, 2012). Overfitting app-
ears typically as overly complex decision trees with a
huge number of nodes, branches and leaves. Overfit-
ting can be reduced by requiring each leaf to repre-
sent a minimum number of examples, or by limiting the
maximum ‘‘depth’’ of the tree (Pedregosa et al., 2011).

Random forests are collections of individual decision
trees, where each tree casts a ‘‘vote’’ for the output label.
By using a large number of randomized trees, the pro-
blem of overfitting can be diminished somewhat. Over-
fitting still occurs as an artifact of the individual trees,
not the forest. Random forest models are relatively
fast and easy to build since the individual trees are
constructed from independent subsets of the training
data, allowing for parallel processing (Breiman, 2001).

3.2 Model Development

3.2.1 CARS Report Preprocessing

Supervised machine learning models learn from
previous examples, where the correct labels of all input
features are known. These known examples are called
the training data. For this project, the inputs were the
weather variables organized on a regularly spaced grid
(1/8 degree) at regular time intervals (hourly). However,
the output labels are CARS reports, which do not cor-
respond directly in either space or time to the gridded
weather data. Therefore, before a training data set can
be produced, the data must be transformed such that
matched pairs of inputs and outputs can be obtained.

An archive of CARS reports was interrogated to
assess this dataset. Burris (2018) found that it was often
the case to find several road segments updated simul-
taneously with the same winter driving condition index.
Reports were often provided a valid time that extended
many hours, and sometimes days, into the future.
Condition updates could also be issued for a segment
before the original report expired. It seems reasonable
to assume that the driving conditions would improve
before an official CARS report was issued to represent
that improved condition. For these reasons, the time of
issuance for each CARS report was considered, rather
than its timespan. We assume that the weather condi-
tions occurring prior to the CARS report were the
factors for determining the driving condition, so report
times were rounded down to the hour in which they
were issued.

Since CARS segments can span across several
weather grids, the spatial extent of CARS reports were
interpolated to the weather variable grid. Reports were
obtained for the time period between November 2014
and December 2016. During this period, the CARS
archive contained the locations of both the starting and
ending points for every segment, and both of these
were assigned the label of the CARS winter driving
condition (converted to a numerical value, good 5 1,
fair 5 2, difficult 5 3, hazardous 5 4). These values
were linearly triangulated to the weather grid locations

Joint Transportation Research Program Technical Report FHWA/IN/JTRP-2018/22 3



(Barber, Dobkin, & Huhdanpaa, 1996). An example of
this interpolation process is provided in Figure 3.1.

Interpolated values are rounded back to the ordinal
numbers and converted to the categorical winter driving
index labels. Weather variables at each grid location were
paired with these interpolated CARS reports. This proce-
dure was applied to every hour in the archive, resulting in
184,884 labelled examples that could be used for the
training dataset. The distribution of these interpo-
lated CARS winter driving index labels are shown in
Table 3.1. The CARS reports were dominated by the
‘‘good’’ category (59% of the total), followed by ‘‘fair’’
(33%) and ‘‘difficult’’ (7%), while ‘‘hazardous’’ reports
were extremely rare (less than 0.5% of the reports).

3.2.2 Evaluation of Model Training

The training data set was randomly split into two
groups: 75% for training and 25% for testing/evalua-
tion. Models were built and trained using the python
programming package called Scikit-learn (Pedregosa et
al., 2011), which is widely used for classification as well
as other machine learning tasks. Since these different
models all use the same input data format in Scikit-
learn, it was relatively easy to test and compare the
performance of several machine learning methods. The
results of the machine learning model development and

evaluation are briefly summarized in this report and are
presented in more detail in Burris (2018).

A total of 16 different classification models were
developed and evaluated to estimate the CARS winter
driving index reports in the training data set (184,884
labeled examples). A sample of the output from these
models is shown in Figure 3.2. After these models were
developed using the random subset of the training data,
they were tested using the remaining 25% and evaluated
by comparing the predicted CARS conditions against
the observed CARS winter driving index. Accuracy
was summarized by simply dividing the number of
correct classification predictions by the total number of
examples (Table 3.2). Training accuracy is defined by
the model fit to the examples used to train the model,
testing accuracy shows how well that model is able to fit
the examples that were not used to train the model.
Model bias was defined for each CARS index category

Figure 3.1 Example of interpolation process for CARS reports to the weather variable grid. Left panel displays CARS winter
driving index reports and INRIX traffic speeds valid at midnight EST January 12, 2018. Right panel displays CARS reports
interpolated to the 1/8 degree weather grid valid at the same time. (Source: Burris, 2018.)

TABLE 3.1
CARS winter driving index report distribution for the training
data set (2014–2016)

CARS winter driving index Good Fair Difficult Hazardous

Number of occurrences 109210 61521 13564 589

Source: Burris (2018).
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Figure 3.2 Examples of several machine learning models for input weather valid at 7:00pm EST December 30, 2017. Estimated
CARS conditions are color coded from good to hazardous. Output from models are presented from: Bernoulli NB (a), random
forest (b), decision tree (c), linear discriminant (d), k-nearest neighbor (e), and MLP classifier (f). (Source: Burris, 2018.)

TABLE 3.2
Performance of various machine learning classification models on 2014–16 training data set

Accuracy Bias POD

ML Model Training Test Good Fair Difficult Hazard Good Fair Difficult Hazard

BernoulliNB 0.57 0.57 1.26 0.11 2.99 0.00 0.87 0.05 0.59 0.00

Decision Tree 1.00 0.85 1.00 1.00 1.00 0.95 0.90 0.79 0.73 0.54

Extra Tree 1.00 0.83 0.99 1.01 1.01 0.90 0.88 0.76 0.67 0.47

Extra Trees 1.00 0.91 0.99 1.04 0.94 0.64 0.94 0.89 0.81 0.58

GaussianNB 0.32 0.32 0.66 0.02 0.00 188.13 0.53 0.01 0.00 0.96

k-NN 0.95 0.91 1.00 1.01 0.97 0.83 0.94 0.87 0.80 0.65

Linear Discrim. 0.67 0.67 1.18 0.78 0.61 0.89 0.86 0.44 0.25 0.06

Linear SVC 0.67 0.67 1.23 0.82 0.03 0.00 0.89 0.46 0.01 0.00

Log. Regr. 0.67 0.68 1.21 0.84 0.07 0.00 0.88 0.47 0.03 0.00

Log. Regr. CV 0.68 0.68 1.21 0.85 0.08 0.00 0.88 0.59 0.04 0.00

MLP 0.75 0.74 1.09 0.93 0.64 0.20 0.87 0.01 0.39 0.13

Near Centroid 0.57 0.56 1.32 0.02 2.30 14.19 0.89 0.02 0.44 0.22

Quadr. Discrim. 0.12 0.12 0.21 0.05 0.04 265.33 0.18 0.88 0.01 0.99

Rand Forest 10 1.00 0.90 0.99 1.03 0.93 0.68 0.93 0.88 0.79 0.54

Rand Forest 20 1.00 0.91 1.01 1.01 0.90 0.57 0.95 0.44 0.79 0.54

Ridge 0.67 0.67 1.25 0.79 0.03 0.00 0.89 0.44 0.01 0.00

Ridge CV 0.67 0.67 1.25 0.79 0.03 0.00 0.89 0.44 0.01 0.00

Source: Burris (2018).
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as the ratio of the number of predicted conditions by
the model to the number of observed CARS reports in
that category only. Probability of detection (POD) was
defined for each CARS category as the ratio of correct
classification predictions in that category to the number
of observed CARS reports in that category. Optimal
values for accuracy, bias, and POD are equal to 1.
These results show that the k-nearest neighbor, decision
tree, and random forest methods were among the
methods that showed the highest accuracy and good
values for bias and POD for multiple CARS index
categories in both subsets of the training data. Deci-
sion tree-based models can be developed quickly and
can directly utilize input variables, factors that are
advantageous for future model refinement. As a result,
the random forest classifier was selected as the main
method for further demonstration and experimental
evaluation.

Another benefit of the decision tree-based models is
they allow for analysis of the relative importance of
each weather variable (feature) that is used as input to
the system. The relative importance of weather variables
for the decision tree approach is displayed in Figure 3.3.
This shows that many of the weather variables displayed
a relatively high degree of importance. The distributions
of these weather variables can be analyzed by separating
the values based on the actual CARS winter driving
index value. Examples of these distributions for visibility
and snow depth are shown in Figure 3.4 using box-and-
whisker diagrams. The top and bottom of the ‘‘box’’
presents the 25th and 75th percentile values. The line in
the middle of the box displays the median value, and
the whiskers show the extent of the data (1st and 99th
percentiles) and ‘‘outliers’’ are represented by dots

beyond the whiskers. These plots are useful for briefly
summarizing differences and similarities between vari-
able distributions. If a variable shows separation
between distributions for different label values, it can
help to accurately discriminate between the different
output labels. The visibility distributions show that
higher visibility conditions are found more often in
‘‘good’’ CARS index (value 5 1) situations and lower
visibilities are found in ‘‘fair,’’ ‘‘difficult,’’ and ‘‘hazar-
dous’’ reports (values 5 2, 3, and 4). Snow depth is
generally found to increase as the CARS driving index
gets worse. These differences in weather variables are
consistent with expectations: low visibility and in-
creased snow depth tend to be associated with more
difficult driving conditions.

3.2.3 Evaluation of Experimental System

The random forest model that was trained using the
data from 2014 to 2016 was applied to real-time
weather variables during the 2017–18 winter season.
Graphical output from this system was posted to a web-
page (Purdue Weather Earth Atmospheric Planetary
Science, 2018) to allow for subjective evaluation of the
estimated driving conditions. An example of this output
is shown in Figure 3.5, the predicted CARS conditions
were found on the left side and the official INDOT
CARS program website was presented in the right side
panel.

This experimental system was evaluated using a
similar gridded approach to the evaluation of the
training of the machine learning system (section 3.2.2).
Between December 2017 and March 2018, 23,414
CARS winter driving index reports were issued that

Figure 3.3 Feature importance from the decision tree machine learning model using the training data set. (Source: Burris, 2018.)
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could be compared with the predictions from the
random forest using real-time weather variables. The
results of this evaluation are presented in Table 3.3.
These results show a reduction in the performance
during the 2017–18 winter season (overall accuracy
around 70%) as compared to the test portion of
the training data set (approximately 90% accuracy).
The experimental system significantly underestimated

the occurrence of degraded conditions, especially in
the ‘‘difficult’’ and ‘‘hazardous’’ categories. Burris
(2018) ran multiple experiments with under- and
oversampling the training data set and was able to
increase the frequency of estimates of ‘‘difficult’’ and
‘‘hazardous’’ conditions. However, the impact on the
overall accuracy of these estimates was found to be
minor.

Figure 3.4 Box and whisker diagrams for weather variable distributions over specific CARS winter driving index categories. (a)
Shows visibility in units of meters; (b) shows snow depth in units of meters.

Figure 3.5 Example of experimental website for automatic CARS report estimates. (Source: Purdue Weather Earth Atmospheric
Planetary Science, 2018.)
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3.2.4 Case Study

In order to demonstrate the performance of this
system, examples from a winter weather event are pre-
sented in this section. A case was selected where wide-
spread winter precipitation was observed that showed
an impact on the driving conditions across the state. On
Friday January 12, 2018, a strong cold front moved
across the state and produced a transition from rain to
freezing rain, sleet, and snow (Figure 3.6). Tempera-
tures quickly fell early Thursday night and early Friday
morning, resulting in significant snow and ice accumu-
lations mainly across the southern half of the state with
numerous reports of 5 inches of snow and a report of
0.4 inches of ice near U.S. 52 between Indianapolis and
Cincinnati (National Weather Service, 2018 a,b,c).

Examples for three different times during this winter
precipitation event are presented in Figure 3.7. The top
panels show the hourly precipitation color coded by
NAM diagnosed winter precipitation type (snow in
blue, freezing rain in pink, rain in green). CARS reports
that were valid at the time are presented in the next
row along with INRIX traffic speeds. The bottom
row indicates estimated conditions from the real-time

experimental random forest model. During the early
part of this event, CARS winter driving index reports
were ‘‘good’’ and the machine learning output is con-
sistent with those reports (not shown). As the tempera-
ture drops, the western portion of the precipitation
changes to freezing rain and sleet, updated CARS
reports indicate ‘‘fair’’ conditions in the western portion
of the state (Fig. 3.7d). The classifier depicts degraded
conditions over a larger area than is shown by the
precipitation, indicating that another weather variable
(perhaps low visibility) has contributed to the classifi-
cation (Fig. 3.7g). This pattern of estimated conditions
is a good match to the actual CARS reports. Between
0300 and 0700 EST only a handful of CARS reports
were issued and they all expired by 0700 EST. At the
same time, freezing rain has moved into the eastern half
of the state, and traffic speeds are noticeably slower
on Interstates 65, 69, 70, 74, and 465 (Fig. 3.7e). While
much of this traffic impact can be attributed to con-
gestion from the morning commute, the previously
observed weather strongly suggests that road condi-
tions had been degraded by weather (Fig. 3.7b). The
estimated CARS reports are in general agreement, with
a large fraction of the state under ‘‘fair’’ conditions

TABLE 3.3
Performance of the experimental real-time machine learning classification with 2017–18 data

Accuracy Bias POD

2014–16

Test

2017–18

Experiment Good Fair Difficult Hazard Good Fair Difficult Hazard

Random

Forest

0.91 0.70 1.20 0.64 0.24 0.00 0.91 0.34 0.03 0.00

Source: Burris (2018).

Figure 3.6 (a) Surface weather map valid 7:00am 12 January 2018 (National Centers for Environmental Prediction, Weather
Prediction Center, 2018); (b) 24h snowfall accumulation preceding 7:00am EST 13 January 2018 (National Operational
Hydrological Remote Sensing Center, 2018).
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(Fig 3.7h). Throughout the rest of the day, the snowfall
in northwest Indiana moves across the rest of the state
(Fig. 3.7c), and slow traffic persists on the southern leg
of I-69 (Fig. 3.7f). Despite the observed weather and

traffic, no new CARS reports were issued for the
southern half of Indiana after 0700 EST (Fig. 3.7c), and
the ‘‘good’’ reports that were still valid expired within a
few hours. Here the benefits of the automated system

Figure 3.7 January 12, 2018 winter weather event. Top row displays observed precipitation color-coded by type (green5rain,
blue5snow, red5freezing rain), middle row shows CARS winter driving index reports and traffic speed from INRIX, bottom row
shows estimated CARS conditions from the random forest model. Left column is valid at 3:00am, middle column valid at 7:00am,
and right column at 3:00pm EST on January 12, 2018. (Source: Burris, 2018.)
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are highlighted as it continued to keep the majority of
the state under ‘‘fair’’ conditions, with areas of ‘‘difficult’’
following the heavier snow in the southern portion of the
state, especially in Vincennes district (Fig. 3.7i).

4. WINTER PRECIPITATION REPORTS

4.1 Overview

In this project, we were motivated by the availability
of the multi-year database of weather information to
provide INDOT with up-to-date analyses of the fre-
quency of occurrence and timing of winter precipitation
reports across the state. This information can be used to
plan and prepare for winter maintenance actions for
upcoming seasons and compare specific winter seasons
to a multi-year average. These analyses incorporate
standard meteorological observations at airport loca-
tions along with crowdsourced reports of precipitation.

The winter precipitation analyses were constructed
by merging two different and independent data sources.
The first source is the Automated Surface Observing
System (ASOS; NOAA, 1998) operated by the National
Oceanic and Atmospheric Administration (NOAA) and
AWOS (Automated Weather Observing System, oper-
ated by the Federal Aviation Administration). These
systems provide the standard, widely used observations
of meteorological conditions located primarily at air-
ports across the United States. For observation of winter
precipitation, only the ASOS systems have a freezing
rain detector; none of the AWOS systems in Indiana
have one. Both ASOS and AWOS are reliable systems
and both use the same optical sensor to detect preci-
pitation. These precipitation sensors suffer from various
limitations and not all ASOS stations are instrumen-
ted in an equivalent way. The primary limitation is
that ASOS cannot correctly distinguish mixed pre-
cipitation type (rain and snow, or rain and ice pellets,
or snow and ice pellets) if not augmented by a human
observer (AWOS stations cannot be augmented). Nor
can the sensor correctly diagnose the presence of sleet/
ice pellets (NOAA, 1998). The only way ice pellets can
be included in an ASOS report is if a human observer
augments the report, and very few ASOS stations are
manned 24 h a day. Thus, ASOS reports are a poor
source of information about the frequency and extent
of ice pellets. In addition, ASOS freezing rain sensors
can commonly be in error (NOAA, 1998). While ASOS
reports can contain freezing rain, freezing rain is missed
under certain circumstances and freezing drizzle is likely
misdiagnosed. None of the AWOS sites in Indiana
are equipped with freezing rain sensors. Therefore only
the ASOS stations can report freezing precipitation
from the standard meteorological network. Finally these
stations are far apart: there are only twelve ASOS and
41 AWOS across all of Indiana. Thus, many incidences
of precipitation are missed because precipitation occurs
between stations. This is even more pronounced for pre-
cipitation types that have high spatial variability, such
as freezing rain.

The second data source is the Meteorological Pheno-
mena Identification Near the Ground (mPING; Elmore
et al., 2014) project. This project, launched 12 Dec 2012,
allows participants to anonymously submit reports of
precipitation types, including mixed precipitation types,
using smart devices, such as smart phones and tablets.
Location and time of report are derived from GPS, yiel-
ding unprecedented time and location accuracy. MPING
reports are crowdsourced and tend to cluster around
towns and cities, however mPING observations are signi-
ficantly more widespread than the ASOS/AWOS loca-
tions. For similar reasons, mPING reports also display
diurnal variability: people go to sleep at night and so the
frequency of reports decreases, too.

All winter precipitation consists of four types; rain,
snow, ice pellets, and freezing rain, along with mixtures
of these four. In this project, each precipitation type is
ranked based on impact severity on transportation and
infrastructure systems. From lowest to highest impact,
these are rain, snow, ice pellets, and freezing rain. When
the precipitation type for mPING reports is a mixture,
the reports are clustered based on the constituent with
the highest impact. Thus, a mixture or rain and snow is
clustered with snow, freezing rain mixed with ice pellets
is clustered with freezing rain, etc., reducing the
mPING precipitation types within each climatology to
the four canonical types.

4.2 Analysis Procedure

All reports of winter precipitation were included in
this analysis, regardless of precipitation rate or visibility
reduction. The number of hours of each precipitation
type was determined by counting reports over a hexa-
gonal grid placed over the continental United States.
Hexagons have the lowest perimeter to area ratio of any
regular tessellation of the plane, which means that in
practice the edge effects are minimized for hexagonal
grids. In addition, for hexagonal grids, the distance
between centroids is the same for all neighbors. The
hexagonal cells were sized in such a way to avoid
accentuating major population centers. Otherwise,
the analysis could display a non-meteorological bias of
higher frequency over populated areas. However, there
is still a need to capture spatial variability in the
durations of each precipitation type. To accommodate
these requirements, the hexagonal cells were sized to an
area of approximately 34,500 sq. km (about 13,000 sq.
mi) and filtered using a weighted discrete kernel
smoother covering seven cells, a center cell and its six
neighbors. This acts to remove most artifacts due to
population centers while preserving meaningful infor-
mation about spatial variability.

For the purposes of these analyses, each observation
is assumed to have a lifetime of one hour within the
clock hour of the report submission. For instance, an
observation of snow at 15 minutes past the hour
counted as snow for the preceding 15 min and following
45 min. An observation of snow submitted at 59 past
the hour is assumed to be valid for the preceding 59 min
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and the following 1 min. Under the assumption that
observations arrive at random times during the hour,
this is as good as any other method of counting ‘‘hours
of precipitation.’’

Analyses are performed for snow, ice pellets, and
freezing rain using the combined mPING and ASOS/
AWOS data. Monthly averages were derived for the
five months November, December, January, February
and March. While winter precipitation occurs outside
of these months, such instances are rare. In all cases, the
combined data result in more overall hours of a given
precipitation type than either data source alone. Since
there are so few observations of ice pellets from the
ASOS/AWOS, the ice pellet analysis depicts mPING
reports. The standard surface observation systems do a
relatively good job of observing snow, although mPING
observations add about 15% to the total number of snow
hours. However, the combined mPING and ASOS/
AWOS surface data yield almost double the number of
hours of freezing rain in some areas than either system
alone.

4.3 Annual Duration of Winter Precipitation

Results of this analysis procedure are shown in
Figure 4.1. This indicates several hundred hours of

snow on average with a steady increase in the number
of hours as you move north. In fact, the northern
portion of the state observes snow at more than double
the frequency as the southern portion of the state. A
few dozen hours of freezing rain and ice pellets are
observed on average across state with subtle variations,
generally increasing as you move north and east. These
plots provide an overall summary of the analysis,
however more detailed information (monthly averages,
observation locations) is available athttp://weather.
eaps.purdue.edu/winter/.

4.4 Comparison to Previous Work

These analyses can be considered an update of a
recent Clear Roads pooled fund study (Mewes, 2012)
where detailed maps of average annual durations of
winter precipitation (snow, blowing snow, and freezing
rain) along with annual snowfall were produced across
the United States. An overall winter severity index was
developed that combined the parameters, and high-
resolution gridded datasets were generated. Mewes
(2012) combined standard airport weather observations
with NAM model winter precipitation type diagno-
stics (see section 2.3). Examples of the annual hours
of snow and freezing rain are shown in Figure 4.2

Figure 4.1 Average annual duration (hours) of snow (a), freezing rain (b), and ice pellets (c) from merged mPING/ASOS/AWOS
Jan 2013–Mar 2018.
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(Mewes, 2012), indicating significant discrepancies
between our updated analyses and this previous study.
The previous study indicates annual durations that are
a factor of four to five times lower than our current
analyses. These discrepancies are partially due to the
different data sources that were used; the additional
mPING observations used in this project should tend to
increase the number of observations of winter pre-
cipitation. No minimum threshold of precipitation rates
or visibility reductions were used in this work, while
Mewes (2012) did set such thresholds, which may have
substantially increased the number of observations
counted in this project.
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